In neuroscience, the default mode network, also default network, or default state network, is a large scale brain network of interacting brain regions known to have activity highly correlated with each other and distinct from other networks in the brain.

, The default-mode network (DMN)
Magnetic resonance imaging of areas of the brain in the default mode network. John Graner, Neuroimaging Department, National Intrepid Center of Excellence, Walter Reed National Military Medical Center, 8901 Wisconsin Avenue, Bethesda, MD 20889, USA. – http://www.frontiersin.org/Neurotrauma/10.3389/fneur.2013.00016/full
Additional graphics
, The default-mode network (DMN)
Default mode network connectivity. This image shows main regions of the default mode network (yellow) and connectivity between the regions color-coded by structural traversing direction (xyz → rgb). This image shows main regions of the default mode network (yellow) and connectivity between the regions color-coded by structural traversing direction (xyz → rgb).
, The default-mode network (DMN)
Graphs of the dynamic development of correlations between brain networks. (A) In children the regions are largely local and are organized by their physical location; the frontal regions are highlighted in light blue. (B) In adults the networks become highly correlated despite their physical distance; the default network is highlighted in light red.[26] Damien A. Fair, Alexander L. Cohen, Jonathan D. Power, Bradley L. Schlaggar, Steven E. Petersen – Figure 2 (doi:10.1371/journal.pcbi.1000381.g002) of: Fair DA, Cohen AL, Power JD et al. (2009). “Functional brain networks develop from a ‘local to distributed’ organization”. PLoS Comput Biol 5 (5): e1000381. DOI:10.1371/journal.pcbi.1000381. PMID 19412534. PMC: 2671306.

References

Haines, L.. (2019). How to Change Your Mind: What the New Science of Psychedelics Teaches Us About Consciousness, Dying, Addiction, Depression, and Transcendence. Journal of Palliative Medicine, 22(4), 468–468.

Plain numerical DOI: 10.1089/jpm.2018.0644
DOI URL
directSciHub download

Christopher Timmermann, S.. (2014). Neurosciences and psycotherapeutic applications in the psychedelic research renaissaince. Revista Chilena de Neuro-Psiquiatria
Muthukumaraswamy, S. D., Carhart-Harris, R. L., Moran, R. J., Brookes, M. J., Williams, T. M., Errtizoe, D., … Nutt, D. J.. (2013). Broadband Cortical Desynchronization Underlies the Human Psychedelic State. Journal of Neuroscience

Plain numerical DOI: 10.1523/JNEUROSCI.2063-13.2013
DOI URL
directSciHub download

Carhart-Harris, R. L., Leech, R., Erritzoe, D., Williams, T. M., Stone, J. M., Evans, J., … Nutt, D. J.. (2013). Functional connectivity measures after psilocybin inform a novel hypothesis of early psychosis. Schizophrenia Bulletin

Plain numerical DOI: 10.1093/schbul/sbs117
DOI URL
directSciHub download

Lyke, J.. (2016). Psilocybin and Peak Experiences. In Neuropathology of Drug Addictions and Substance Misuse

Plain numerical DOI: 10.1016/B978-0-12-800212-4.00081-9
DOI URL
directSciHub download

Neuroscience, H., Carhart-harris, R. L., Leech, R., Hellyer, P. J., Shanahan, M., Feilding, A., … Park, B.. (2014). The entropic brain : a theory of conscious states informed by neuroimaging research with psychedelic drugs. Frontiers in Human Neuroscience

Plain numerical DOI: 10.3389/fnhum.2014.00020
DOI URL
directSciHub download

Carhart-Harris, R. L., Roseman, L., Bolstridge, M., Demetriou, L., Pannekoek, J. N., Wall, M. B., … Nutt, D. J.. (2017). Psilocybin for treatment-resistant depression: FMRI-measured brain mechanisms. Scientific Reports

Plain numerical DOI: 10.1038/s41598-017-13282-7
DOI URL
directSciHub download

Tagliazucchi, E., Carhart-Harris, R., Leech, R., Nutt, D., & Chialvo, D. R.. (2014). Enhanced repertoire of brain dynamical states during the psychedelic experience. Human Brain Mapping

Plain numerical DOI: 10.1002/hbm.22562
DOI URL
directSciHub download